Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of Training Methods for Deep Neural Networks (1504.06825v1)

Published 26 Apr 2015 in cs.LG and cs.AI

Abstract: This report describes the difficulties of training neural networks and in particular deep neural networks. It then provides a literature review of training methods for deep neural networks, with a focus on pre-training. It focuses on Deep Belief Networks composed of Restricted Boltzmann Machines and Stacked Autoencoders and provides an outreach on further and alternative approaches. It also includes related practical recommendations from the literature on training them. In the second part, initial experiments using some of the covered methods are performed on two databases. In particular, experiments are performed on the MNIST hand-written digit dataset and on facial emotion data from a Kaggle competition. The results are discussed in the context of results reported in other research papers. An error rate lower than the best contribution to the Kaggle competition is achieved using an optimized Stacked Autoencoder.

Citations (15)

Summary

We haven't generated a summary for this paper yet.