Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy (1411.4046v1)

Published 14 Nov 2014 in cs.LG and cs.CV

Abstract: Nowadays this is very popular to use deep architectures in machine learning. Deep Belief Networks (DBNs) are deep architectures that use stack of Restricted Boltzmann Machines (RBM) to create a powerful generative model using training data. In this paper we present an improvement in a common method that is usually used in training of RBMs. The new method uses free energy as a criterion to obtain elite samples from generative model. We argue that these samples can more accurately compute gradient of log probability of training data. According to the results, an error rate of 0.99% was achieved on MNIST test set. This result shows that the proposed method outperforms the method presented in the first paper introducing DBN (1.25% error rate) and general classification methods such as SVM (1.4% error rate) and KNN (with 1.6% error rate). In another test using ISOLET dataset, letter classification error dropped to 3.59% compared to 5.59% error rate achieved in those papers using this dataset. The implemented method is available online at "http://ceit.aut.ac.ir/~keyvanrad/DeeBNet Toolbox.html".

Citations (22)

Summary

We haven't generated a summary for this paper yet.