Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acyclic chromatic index of triangle-free 1-planar graphs (1504.06234v2)

Published 23 Apr 2015 in math.CO and cs.DM

Abstract: An acyclic edge coloring of a graph $G$ is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index $\chiup_{a}'(G)$ of a graph $G$ is the least number of colors in an acyclic edge coloring of $G$. It was conjectured that $\chiup'_{a}(G)\leq \Delta(G) + 2$ for any simple graph $G$ with maximum degree $\Delta(G)$. A graph is {\em $1$-planar} if it can be drawn on the plane such that every edge is crossed by at most one other edge. In this paper, we prove that every triangle-free $1$-planar graph $G$ has an acyclic edge coloring with $\Delta(G) + 16$ colors.

Citations (4)

Summary

We haven't generated a summary for this paper yet.