Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Further result on acyclic chromatic index of planar graphs (1405.0713v2)

Published 4 May 2014 in math.CO and cs.DM

Abstract: An acyclic edge coloring of a graph $G$ is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index $\chiup_{a}'(G)$ of a graph $G$ is the least number of colors in an acyclic edge coloring of $G$. It was conjectured that $\chiup'_{a}(G)\leq \Delta(G) + 2$ for any simple graph $G$ with maximum degree $\Delta(G)$. In this paper, we prove that every planar graph $G$ admits an acyclic edge coloring with $\Delta(G) + 6$ colors.

Citations (19)

Summary

We haven't generated a summary for this paper yet.