Adaptive discontinuous Galerkin methods for nonlinear parabolic problems (1504.02646v1)
Abstract: This work is devoted to the study of a posteriori error estimation and adaptivity in parabolic problems with a particular focus on spatial discontinuous Galerkin (dG) discretisations. We begin by deriving an a posteriori error estimator for a linear non-stationary convection-diffusion problem that is discretised with a backward Euler dG method. An adaptive algorithm is then proposed to utilise the error estimator. The effectiveness of both the error estimator and the proposed algorithm is shown through a series of numerical experiments. Moving on to nonlinear problems, we investigate the numerical approximation of blow-up. To begin this study, we first look at the numerical approximation of blow-up in nonlinear ODEs through standard time stepping schemes. We then derive an a posteriori error estimator for an implicit-explicit (IMEX) dG discretisation of a semilinear parabolic PDE with quadratic nonlinearity. An adaptive algorithm is proposed that uses the error estimator to approach the blow-up time. The adaptive algorithm is then applied in a series of test cases to gauge the effectiveness of the error estimator. Finally, we consider the adaptive numerical approximation of a nonlinear interface problem that is used to model the mass transfer of solutes through semi-permiable membranes. An a posteriori error estimator is proposed for the IMEX dG discretisation of the model and its effectiveness tested through a series of numerical experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.