Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Falls with X-Factor Hidden Markov Models (1504.02141v5)

Published 8 Apr 2015 in cs.LG and cs.AI

Abstract: Identification of falls while performing normal activities of daily living (ADL) is important to ensure personal safety and well-being. However, falling is a short term activity that occurs infrequently. This poses a challenge to traditional classification algorithms, because there may be very little training data for falls (or none at all). This paper proposes an approach for the identification of falls using a wearable device in the absence of training data for falls but with plentiful data for normal ADL. We propose three `X-Factor' Hidden Markov Model (XHMMs) approaches. The XHMMs model unseen falls using "inflated" output covariances (observation models). To estimate the inflated covariances, we propose a novel cross validation method to remove "outliers" from the normal ADL that serve as proxies for the unseen falls and allow learning the XHMMs using only normal activities. We tested the proposed XHMM approaches on two activity recognition datasets and show high detection rates for falls in the absence of fall-specific training data. We show that the traditional method of choosing a threshold based on maximum of negative of log-likelihood to identify unseen falls is ill-posed for this problem. We also show that supervised classification methods perform poorly when very limited fall data are available during the training phase.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shehroz S. Khan (42 papers)
  2. Michelle E. Karg (1 paper)
  3. Dana Kulic (83 papers)
  4. Jesse Hoey (25 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.