Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Adversarial Learning for Detecting Unseen Falls (1905.07817v2)

Published 19 May 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Fall detection is an important problem from both the health and machine learning perspective. A fall can lead to severe injuries, long term impairments or even death in some cases. In terms of machine learning, it presents a severely class imbalance problem with very few or no training data for falls owing to the fact that falls occur rarely. In this paper, we take an alternate philosophy to detect falls in the absence of their training data, by training the classifier on only the normal activities (that are available in abundance) and identifying a fall as an anomaly. To realize such a classifier, we use an adversarial learning framework, which comprises of a spatio-temporal autoencoder for reconstructing input video frames and a spatio-temporal convolution network to discriminate them against original video frames. 3D convolutions are used to learn spatial and temporal features from the input video frames. The adversarial learning of the spatio-temporal autoencoder will enable reconstructing the normal activities of daily living efficiently; thus, rendering detecting unseen falls plausible within this framework. We tested the performance of the proposed framework on camera sensing modalities that may preserve an individual's privacy (fully or partially), such as thermal and depth camera. Our results on three publicly available datasets show that the proposed spatio-temporal adversarial framework performed better than other baseline frame based (or spatial) adversarial learning methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shehroz S. Khan (42 papers)
  2. Jacob Nogas (5 papers)
  3. Alex Mihailidis (16 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.