Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Khovanov homology from Floer cohomology (1504.01230v2)

Published 6 Apr 2015 in math.SG and math.GT

Abstract: This paper realises the Khovanov homology of a link in the 3-sphere as a Lagrangian Floer cohomology group, establishing a conjecture of Seidel and the second author. The starting point is the previously established formality theorem for the symplectic arc algebra over a field k of characteristic zero. Here we prove the symplectic cup and cap bimodules which relate different symplectic arc algebras are themselves formal over k, and construct a long exact triangle for symplectic Khovanov cohomology. We then prove the symplectic and combinatorial arc algebras are isomorphic over the integers in a manner compatible with the cup bimodules. It follows that Khovanov homology and symplectic Khovanov cohomology co-incide in characteristic zero.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube