Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Beyond Chance-Constrained Convex Mixed-Integer Optimization: A Generalized Calafiore-Campi Algorithm and the notion of $S$-optimization (1504.00076v2)

Published 1 Apr 2015 in math.MG, math.CO, and math.OC

Abstract: The scenario approach developed by Calafiore and Campi to attack chance-constrained convex programs utilizes random sampling on the uncertainty parameter to substitute the original problem with a representative continuous convex optimization with $N$ convex constraints which is a relaxation of the original. Calafiore and Campi provided an explicit estimate on the size $N$ of the sampling relaxation to yield high-likelihood feasible solutions of the chance-constrained problem. They measured the probability of the original constraints to be violated by the random optimal solution from the relaxation of size $N$. This paper has two main contributions. First, we present a generalization of the Calafiore-Campi results to both integer and mixed-integer variables. In fact, we demonstrate that their sampling estimates work naturally for variables restricted to some subset $S$ of $\mathbb Rd$. The key elements are generalizations of Helly's theorem where the convex sets are required to intersect $S \subset \mathbb Rd$. The size of samples in both algorithms will be directly determined by the $S$-Helly numbers. Motivated by the first half of the paper, for any subset $S \subset \mathbb Rd$, we introduce the notion of an $S$-optimization problem, where the variables take on values over $S$. It generalizes continuous, integer, and mixed-integer optimization. We illustrate with examples the expressive power of $S$-optimization to capture sophisticated combinatorial optimization problems with difficult modular constraints. We reinforce the evidence that $S$-optimization is "the right concept" by showing that the well-known randomized sampling algorithm of K. Clarkson for low-dimensional convex optimization problems can be extended to work with variables taking values over $S$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.