Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A fractional space-time optimal control problem: analysis and discretization\ (1504.00063v1)

Published 31 Mar 2015 in math.OC and math.NA

Abstract: We study a linear-quadratic optimal control problem involving a parabolic equation with fractional diffusion and Caputo fractional time derivative of orders $s \in (0,1)$ and $\gamma \in (0,1]$, respectively. The spatial fractional diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic operator. Thus, we consider an equivalent formulation with a quasi-stationary elliptic problem with a dynamic boundary condition as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We consider a fully-discrete scheme: piecewise constant functions for the control and, for the state, first-degree tensor product finite elements in space and a finite difference discretization in time. We show convergence of this scheme and, for $s \in (0,1)$ and $\gamma = 1$, we derive a priori error estimates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.