Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Moment closure approximations of the Boltzmann Equation based on φ-divergences (1503.05183v1)

Published 17 Mar 2015 in math-ph, math.MP, and physics.comp-ph

Abstract: This paper is concerned with approximations of the Boltzmann equation based on the method of moments. We propose a generalization of the setting of the moment-closure problem from relative entropy to {\phi}-divergences and a corresponding closure procedure based on minimization of {\phi}-divergences. The proposed description encapsulates as special cases Grad's classical closure based on expansion in Hermite polynomials and Levermore's entropy-based closure. We establish that the generalization to divergence-based closures enables the construction of extended thermodynamic theories that avoid essential limitations of the standard moment-closure formulations such as inadmissibility of the approximate phase-space distribution, potential loss of hyperbolicity and singularity of flux functions at local equilibrium. The divergence-based closure leads to a hierarchy of tractable symmetric hyperbolic systems that retain the fundamental structural properties of the Boltzmann equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.