Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplace's rule of succession in information geometry (1503.04304v1)

Published 14 Mar 2015 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Laplace's "add-one" rule of succession modifies the observed frequencies in a sequence of heads and tails by adding one to the observed counts. This improves prediction by avoiding zero probabilities and corresponds to a uniform Bayesian prior on the parameter. The canonical Jeffreys prior corresponds to the "add-one-half" rule. We prove that, for exponential families of distributions, such Bayesian predictors can be approximated by taking the average of the maximum likelihood predictor and the \emph{sequential normalized maximum likelihood} predictor from information theory. Thus in this case it is possible to approximate Bayesian predictors without the cost of integrating or sampling in parameter space.

Citations (3)

Summary

We haven't generated a summary for this paper yet.