Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Bernstein-like Concentration Inequalities for the Missing Mass (1503.02768v2)

Published 10 Mar 2015 in stat.ML

Abstract: We are concerned with obtaining novel concentration inequalities for the missing mass, i.e. the total probability mass of the outcomes not observed in the sample. We not only derive - for the first time - distribution-free Bernstein-like deviation bounds with sublinear exponents in deviation size for missing mass, but also improve the results of McAllester and Ortiz (2003) andBerend and Kontorovich (2013, 2012) for small deviations which is the most interesting case in learning theory. It is known that the majority of standard inequalities cannot be directly used to analyze heterogeneous sums i.e. sums whose terms have large difference in magnitude. Our generic and intuitive approach shows that the heterogeneity issue introduced in McAllester and Ortiz (2003) is resolvable at least in the case of missing mass via regulating the terms using our novel thresholding technique.

Citations (5)

Summary

We haven't generated a summary for this paper yet.