Papers
Topics
Authors
Recent
Search
2000 character limit reached

Polynomial minimal surfaces of degree five

Published 26 Feb 2015 in math.DG | (1502.07474v2)

Abstract: The problem of finding all minimal surfaces presented in parametric form as polynomials of certain degree is discussed by many authors. It is known that the classical Enneper surface is (up to position in space and homothety) the only polynomial minimal surface of degree 3 in isothermal parameters. In higher degrees the problem is quite more complicated. Here we find a general form for the functions that generate a polynomial minimal surface of arbitrary degree via the Weierstrass formula and prove that any polynomial minimal surface of degree 5 in isothermal parameters may be considered as belonging to one of three special families.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.