Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Polynomial minimal surfaces of degree five (1502.07474v2)

Published 26 Feb 2015 in math.DG

Abstract: The problem of finding all minimal surfaces presented in parametric form as polynomials of certain degree is discussed by many authors. It is known that the classical Enneper surface is (up to position in space and homothety) the only polynomial minimal surface of degree 3 in isothermal parameters. In higher degrees the problem is quite more complicated. Here we find a general form for the functions that generate a polynomial minimal surface of arbitrary degree via the Weierstrass formula and prove that any polynomial minimal surface of degree 5 in isothermal parameters may be considered as belonging to one of three special families.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)