Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Specificity (1502.04569v2)

Published 16 Feb 2015 in cs.CV

Abstract: For some images, descriptions written by multiple people are consistent with each other. But for other images, descriptions across people vary considerably. In other words, some images are specific $-$ they elicit consistent descriptions from different people $-$ while other images are ambiguous. Applications involving images and text can benefit from an understanding of which images are specific and which ones are ambiguous. For instance, consider text-based image retrieval. If a query description is moderately similar to the caption (or reference description) of an ambiguous image, that query may be considered a decent match to the image. But if the image is very specific, a moderate similarity between the query and the reference description may not be sufficient to retrieve the image. In this paper, we introduce the notion of image specificity. We present two mechanisms to measure specificity given multiple descriptions of an image: an automated measure and a measure that relies on human judgement. We analyze image specificity with respect to image content and properties to better understand what makes an image specific. We then train models to automatically predict the specificity of an image from image features alone without requiring textual descriptions of the image. Finally, we show that modeling image specificity leads to improvements in a text-based image retrieval application.

Citations (40)

Summary

We haven't generated a summary for this paper yet.