Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Anomalous Scaling Exponents of Turbulence in General Dimension from Random Geometry (1502.03069v3)

Published 10 Feb 2015 in nlin.CD, hep-th, and physics.flu-dyn

Abstract: We propose an exact analytical formula for the anomalous scaling exponents of inertial range structure functions in incompressible fluid turbulence. The formula is a gravitational Knizhnik-Polyakov-Zamolodchikov (KPZ)-type relation, and is valid in any number of space dimensions. It incorporates intermittency by gravitationally dressing the Kolmogorov linear scaling via a coupling to a random geometry. The formula has one real parameter $\gamma$ that depends on the number of space dimensions. The scaling exponents satisfy the convexity inequality, and the supersonic bound constraint. They agree with the experimental and numerical data in two and three space dimensions, and with numerical data in four space dimensions. Intermittency increases with $\gamma$, and in the infinite $\gamma$ limit the scaling exponents approach the value one, as in Burgers turbulence. At large $n$ the $n$th order exponent scales as $\sqrt{n}$. We discuss the relation between fluid flows and black hole geometry that inspired our proposal.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.