Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Abelian and Non-Abelian States in $ν=2/3$ Bilayer Fractional Quantum Hall Systems (1502.02671v2)

Published 9 Feb 2015 in cond-mat.str-el and cond-mat.mes-hall

Abstract: There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two- component FQH systems at total filling fraction $\nu = n+ 2/3$, for integer $n$. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here, we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction $\nu = n+2/3$, including in particular the possibility of the non-Abelian $Z_4$ parafermion state. In $\nu = 2/3$ bilayers, we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the $Z_4$ state. On the other hand, in single-component systems at $\nu = 8/3$, we find that the $Z_4$ parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed $\nu = 8/3$ state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.