Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Investigating puzzling aspects of the quantum theory by means of its hydrodynamic formulation (1501.05783v2)

Published 23 Jan 2015 in quant-ph, physics.ed-ph, and physics.hist-ph

Abstract: Bohmian mechanics, a hydrodynamic formulation of the quantum theory, constitutes a useful tool to understand the role of the phase as the mechanism responsible for the dynamical evolution displayed by quantum systems. This role is analyzed and discussed here in the context of quantum interference, considering to this end two well-known scenarios, namely Young's two-slit experiment and Wheeler's delayed choice experiment. A numerical implementation of the first scenario is used to show how interference in a coherent superposition of two counter-propagating wave packets can be seen and explained in terms of an effective model consisting of a single wave packet scattered off an attractive hard wall. The outcomes from this model are then applied to the analysis of Wheeler's delayed choice experiment, also recreated by means of a reliable realistic simulation. Both examples illustrate quite well how the Bohmian formulation helps to explain in a natural way (and therefore to demystify) aspects of the quantum theory typically regarded as paradoxical. In other words, they show that a proper understanding of quantum phase dynamics immediately removes any trace of unnecessary artificial wave-particle arguments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)