Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A skein action of the symmetric group on noncrossing partitions (1501.04680v3)

Published 20 Jan 2015 in math.CO

Abstract: We introduce and study a new action of the symmetric group $\mathfrak{S}_n$ on the vector space spanned by noncrossing partitions of ${1, 2, \dots, n}$ in which the adjacent transpositions $(i, i+1) \in \mathfrak{S}_n$ act on noncrossing partitions by means of skein relations. We characterize the isomorphism type of the resulting module and use it to obtain new representation theoretic proofs of cyclic sieving results due to Reiner-Stanton-White and Pechenik for the action of rotation on various classes of noncrossing partitions and the action of K-promotion on two-row rectangular increasing tableaux. Our skein relations generalize the Kauffman bracket (or Ptolemy relation) and can be used to resolve any set partition as a linear combination of noncrossing partitions in a $\mathfrak{S}_n$-equivariant way.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.