Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Solving the Infinite-horizon Constrained LQR Problem using Accelerated Dual Proximal Methods (1501.04352v1)

Published 18 Jan 2015 in math.OC

Abstract: This work presents an algorithmic scheme for solving the infinite-time constrained linear quadratic regulation problem. We employ an accelerated version of a popular proximal gradient scheme, commonly known as the Forward-Backward Splitting (FBS), and prove its convergence to the optimal solution in our infinite-dimensional setting. Each iteration of the algorithm requires only finite memory, is computationally cheap, and makes no use of terminal invariant sets; hence, the algorithm can be applied to systems of very large dimensions. The acceleration brings in optimal convergence rates O(1/k2) for function values and O(1/k) for primal iterates and renders the proposed method a practical alternative to model predictive control schemes for setpoint tracking. In addition, for the case when the true system is subject to disturbances or modelling errors, we propose an efficient warm-starting procedure, which significantly reduces the number of iterations when the algorithm is applied in closed-loop. Numerical examples demonstrate the approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.