Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Some K-theoretic properties of the kernel of a locally nilpotent derivation on k[X_1, \dots, X_4] (1501.01438v1)

Published 7 Jan 2015 in math.AC

Abstract: Let k be an algebraically closed field of characteristic zero, D a locally nilpotent derivation on the polynomial ring k[X_1, X_2,X_3,X_4] and A the kernel of D. A question of M. Miyanishi asks whether projective modules over A are necessarily free. Implicit is a subquestion: whether the Grothendieck group K_0(A) is trivial. In this paper we shall demonstrate an explicit k[X_1]-linear fixed point free locally nilpotent derivation D of k[X_1,X_2, X_3, X_4] whose kernel A has an isolated singularity and whose Grothendieck group K_0(A) is not finitely generated; in particular, there exists an infinite family of pairwise non-isomorphic projective modules over the kernel A. We shall also show that, although Miyanishi's original question does not have an affirmative answer in general, suitably modified versions of the question do have affirmative answers when D annihilates a variable. For instance, we shall establish that in this case the groups G_0(A) and G_1(A) are indeed trivial. Further, we shall see that if the above kernel A is a regular ring, then A is actually a polynomial ring over k; in particular, by the Quillen-Suslin theorem, Miyanishi's question has an affirmative answer. Our construction involves rings defined by the relation umv=F(z,t), where F(Z,T) is an irreducible polynomial in k[Z,T]. We shall show that a necessary and sufficient condition for such a ring to be the kernel of a k[X_1]-linear locally nilpotent derivation D of a polynomial ring k[X_1,...,X_4] is that F defines a polynomial curve.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.