Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Panel data segmentation under finite time horizon (1501.00177v3)

Published 31 Dec 2014 in math.ST and stat.TH

Abstract: We study the nonparametric change point estimation for common changes in the means of panel data. The consistency of estimates is investigated when the number of panels tends to infinity but the sample size remains finite. Our focus is on weighted denoising estimates, involving the group fused LASSO, and on the weighted CUSUM estimates. Due to the fixed sample size, the common weighting schemes do not guarantee consistency under (serial) dependence and most typical weightings do not even provide consistency in the i.i.d. setting when the noise is too dominant. Hence, on the one hand, we propose a consistent covariance-based extension of existing weighting schemes and discuss straightforward estimates of those weighting schemes. The performance will be demonstrated empirically in a simulation study. On the other hand, we derive sharp bounds on the change to noise ratio that ensure consistency in the i.i.d. setting for classical weightings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube