Game-theoretical control with continuous action sets (1412.0543v1)
Abstract: Motivated by the recent applications of game-theoretical learning techniques to the design of distributed control systems, we study a class of control problems that can be formulated as potential games with continuous action sets, and we propose an actor-critic reinforcement learning algorithm that provably converges to equilibrium in this class of problems. The method employed is to analyse the learning process under study through a mean-field dynamical system that evolves in an infinite-dimensional function space (the space of probability distributions over the players' continuous controls). To do so, we extend the theory of finite-dimensional two-timescale stochastic approximation to an infinite-dimensional, Banach space setting, and we prove that the continuous dynamics of the process converge to equilibrium in the case of potential games. These results combine to give a provably-convergent learning algorithm in which players do not need to keep track of the controls selected by the other agents.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.