Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On relative clique number of colored mixed graphs (1810.05503v1)

Published 12 Oct 2018 in cs.DM and math.CO

Abstract: An $(m, n)$-colored mixed graph is a graph having arcs of $m$ different colors and edges of $n$ different colors. A graph homomorphism of an $(m, n$)-colored mixed graph $G$ to an $(m, n)$-colored mixed graph $H$ is a vertex mapping such that if $uv$ is an arc (edge) of color $c$ in $G$, then $f(u)f(v)$ is also an arc (edge) of color $c$. The ($m, n)$-colored mixed chromatic number of an $(m, n)$-colored mixed graph $G$, introduced by Ne\v{s}et\v{r}il and Raspaud [J. Combin. Theory Ser. B 2000] is the order (number of vertices) of the smallest homomorphic image of $G$. Later Bensmail, Duffy and Sen [Graphs Combin. 2017] introduced another parameter related to the $(m, n)$-colored mixed chromatic number, namely, the $(m, n)$-relative clique number as the maximum cardinality of a vertex subset which, pairwise, must have distinct images with respect to any colored homomorphism. In this article, we study the $(m, n$)-relative clique number for the family of subcubic graphs, graphs with maximum degree $\Delta$, planar graphs and triangle-free planar graphs and provide new improved bounds in each of the cases. In particular, for subcubic graphs we provide exact value of the parameter.

Citations (2)

Summary

We haven't generated a summary for this paper yet.