Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

The formation of trapped surfaces in spherically-symmetric Einstein-Euler spacetimes with bounded variation (1411.3008v1)

Published 11 Nov 2014 in gr-qc and math.AP

Abstract: We study the evolution of a self-gravitating compressible fluid in spherical symmetry and we prove the existence of weak solutions with bounded variation for the Einstein-Euler equations of general relativity. We formulate the initial value problem in Eddington-Finkelstein coordinates and prescribe spherically symmetric data on a characteristic initial hypersurface. We introduce here a broad class of initial data which contain no trapped surfaces, and we then prove that their Cauchy development contains trapped surfaces. We therefore establish the formation of trapped surfaces in weak solutions to the Einstein equations. This result generalizes a theorem by Christodoulou for regular vacuum spacetimes (but without symmetry restriction). Our method of proof relies on a generalization of the "random choice" method for nonlinear hyperbolic systems and on a detailed analysis of the nonlinear coupling between the Einstein equations and the relativistic Euler equations in spherical symmetry.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.