Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interior-point algorithms for convex optimization based on primal-dual metrics (1411.2129v1)

Published 8 Nov 2014 in math.OC

Abstract: We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.