Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generic Sample Splitting Approach for Refined Community Recovery in Stochastic Block Models (1411.1469v1)

Published 6 Nov 2014 in stat.ML, math.ST, and stat.TH

Abstract: We propose and analyze a generic method for community recovery in stochastic block models and degree corrected block models. This approach can exactly recover the hidden communities with high probability when the expected node degrees are of order $\log n$ or higher. Starting from a roughly correct community partition given by some conventional community recovery algorithm, this method refines the partition in a cross clustering step. Our results simplify and extend some of the previous work on exact community recovery, discovering the key role played by sample splitting. The proposed method is simple and can be implemented with many practical community recovery algorithms.

Citations (18)

Summary

We haven't generated a summary for this paper yet.