Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for $\ell_0$-Low Rank Approximation (1710.11253v2)

Published 30 Oct 2017 in cs.DS, cs.DM, cs.LG, and stat.ML

Abstract: We study the $\ell_0$-Low Rank Approximation Problem, where the goal is, given an $m \times n$ matrix $A$, to output a rank-$k$ matrix $A'$ for which $|A'-A|_0$ is minimized. Here, for a matrix $B$, $|B|_0$ denotes the number of its non-zero entries. This NP-hard variant of low rank approximation is natural for problems with no underlying metric, and its goal is to minimize the number of disagreeing data positions. We provide approximation algorithms which significantly improve the running time and approximation factor of previous work. For $k > 1$, we show how to find, in poly$(mn)$ time for every $k$, a rank $O(k \log(n/k))$ matrix $A'$ for which $|A'-A|_0 \leq O(k2 \log(n/k)) \mathrm{OPT}$. To the best of our knowledge, this is the first algorithm with provable guarantees for the $\ell_0$-Low Rank Approximation Problem for $k > 1$, even for bicriteria algorithms. For the well-studied case when $k = 1$, we give a $(2+\epsilon)$-approximation in {\it sublinear time}, which is impossible for other variants of low rank approximation such as for the Frobenius norm. We strengthen this for the well-studied case of binary matrices to obtain a $(1+O(\psi))$-approximation in sublinear time, where $\psi = \mathrm{OPT}/\lVert A\rVert_0$. For small $\psi$, our approximation factor is $1+o(1)$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Karl Bringmann (85 papers)
  2. Pavel Kolev (19 papers)
  3. David P. Woodruff (206 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.