Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic Properties of Overpartition Triples (1410.7898v2)

Published 29 Oct 2014 in math.NT and math.CO

Abstract: Let ${{\overline{p}}{3}}(n)$ be the number of overpartition triples of $n$. By elementary series manipulations, we establish some congruences for ${\overline{p}}{3}(n)$ modulo small powers of 2, such as [{{\overline{p}}{3}}(16n+14)\equiv 0 \pmod{32}, \quad {{\overline{p}}{3}}(8n+7)\equiv 0 \pmod{64}.] We also find many arithmetic properties for ${{\overline{p}}{3}}(n)$ modulo 7, 9 and 11, involving the following infinite families of Ramanujan-type congruences: for any integers $\alpha \ge 1$ and $n \ge 0$, we have ${{\overline{p}}{3}}\big({{3}{2\alpha +1}}(3n+2)\big)\equiv 0$ (mod $9\cdot 24$), $\overline{p}{3}(4{\alpha-1}(56n+49)) \equiv 0$ (mod 7) and [{{\overline{p}}{3}}\big({{7}{2\alpha +1}}(7n+3)\big)\equiv {{\overline{p}}{3}}\big({{7}{2\alpha +1}}(7n+5)\big)\equiv {{\overline{p}}{3}}\big({{7}{2\alpha +1}}(7n+6)\big)\equiv 0 \pmod{7}.]

Summary

We haven't generated a summary for this paper yet.