Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramanujan-type Congruences for Overpartitions Modulo 16 (1408.1597v1)

Published 7 Aug 2014 in math.CO and math.NT

Abstract: Let $\overline{p}(n)$ denote the number of overpartitions of $n$. Recently, Fortin-Jacob-Mathieu and Hirschhorn-Sellers independently obtained 2-, 3- and 4-dissections of the generating function for $\overline{p}(n)$ and derived a number of congruences for $\overline{p}(n)$ modulo $4$, $8$ and $64$ including $\overline{p}(5n+2)\equiv 0 \pmod{4}$, $\overline{p}(4n+3)\equiv 0 \pmod{8}$ and $\overline{p}(8n+7)\equiv 0 \pmod{64}$. By employing dissection techniques, Yao and Xia obtained congruences for $\overline{p}(n)$ modulo $8, 16$ and $32$, such as $\overline{p}(48n+26) \equiv 0 \pmod{8}$, $\overline{p}(24n+17)\equiv 0 \pmod{16}$ and $\overline{p}(72n+69)\equiv 0 \pmod{32}$. In this paper, we give a 16-dissection of the generating function for $\overline{p}(n)$ modulo 16 and we show that $\overline{p}(16n+14)\equiv0\pmod{16}$ for $n\ge 0$. Moreover, by using the $2$-adic expansion of the generating function of $\overline{p}(n)$ due to Mahlburg, we obtain that $\overline{p}(\ell2n+r\ell)\equiv0\pmod{16}$, where $n\ge 0$, $\ell \equiv -1\pmod{8}$ is an odd prime and $r$ is a positive integer with $\ell \nmid r$. In particular, for $\ell=7$, we get $\overline{p}(49n+7)\equiv0\pmod{16}$ and $\overline{p}(49n+14)\equiv0\pmod{16}$ for $n\geq 0$. We also find four congruence relations: $\overline{p}(4n)\equiv(-1)n\overline{p}(n) \pmod{16}$ for $n\ge 0$, $\overline{p}(4n)\equiv(-1)n\overline{p}(n)\pmod{32}$ for $n$ being not a square of an odd positive integer, $\overline{p}(4n)\equiv(-1)n\overline{p}(n)\pmod{64}$ for $n\not\equiv 1,2,5\pmod{8}$ and $\overline{p}(4n)\equiv(-1)n\overline{p}(n)\pmod{128}$ for $n\equiv 0\pmod{4}$.

Summary

We haven't generated a summary for this paper yet.