Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Liouville Type Theorems for Two Mixed Boundary Value Problems with General Nonlinearities (1410.5157v1)

Published 20 Oct 2014 in math.AP

Abstract: In this paper, we study the nonexistence of positive solutions for the following two mixed boundary value problems. The first problem is the mixed nonlinear-Neumann boundary value problem $$ \left{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \ \displaystyle \ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\ \displaystyle \ \frac{\partial u}{\partial \nu}=0 &{\rm on}\quad \Gamma_0 \end{array} \right. $$ and the second is the nonlinear-Dirichlet boundary value problem $$ \left{ \begin{array}{ll} \displaystyle -\Delta u=f(u) &{\rm in}\quad \R, \ \displaystyle \ \frac{\partial u}{\partial \nu}=g(u) &{\rm on}\quad \Gamma_1,\ \displaystyle \ u=0 &{\rm on}\quad \Gamma_0, \end{array} \right. $$ where $\R={x\in \mathbb RN:x_N>0}$, $\Gamma_1={x\in \mathbb RN:x_N=0,x_1<0}$ and $\Gamma_0={x\in \mathbb RN:x_N=0,x_1>0}$. We will prove that these problems possess no positive solution under some assumptions on the nonlinear terms. The main technique we use is the moving plane method in an integral form.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)