Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Oblivious Transfer Capacity of Generalized Erasure Channels against Malicious Adversaries (1410.2862v1)

Published 10 Oct 2014 in cs.CR, cs.IT, and math.IT

Abstract: Noisy channels are a powerful resource for cryptography as they can be used to obtain information-theoretically secure key agreement, commitment and oblivious transfer protocols, among others. Oblivious transfer (OT) is a fundamental primitive since it is complete for secure multi-party computation, and the OT capacity characterizes how efficiently a channel can be used for obtaining string oblivious transfer. Ahlswede and Csisz\'{a}r (\emph{ISIT'07}) presented upper and lower bounds on the OT capacity of generalized erasure channels (GEC) against passive adversaries. In the case of GEC with erasure probability at least 1/2, the upper and lower bounds match and therefore the OT capacity was determined. It was later proved by Pinto et al. (\emph{IEEE Trans. Inf. Theory 57(8)}) that in this case there is also a protocol against malicious adversaries achieving the same lower bound, and hence the OT capacity is identical for passive and malicious adversaries. In the case of GEC with erasure probability smaller than 1/2, the known lower bound against passive adversaries that was established by Ahlswede and Csisz\'{a}r does not match their upper bound and it was unknown whether this OT rate could be achieved against malicious adversaries as well. In this work we show that there is a protocol against malicious adversaries achieving the same OT rate that was obtained against passive adversaries. In order to obtain our results we introduce a novel use of interactive hashing that is suitable for dealing with the case of low erasure probability ($p* <1/2$).

Citations (10)

Summary

We haven't generated a summary for this paper yet.