Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Multi-level pinning problems for random walks and self-avoiding lattice paths (1410.2694v1)

Published 10 Oct 2014 in math.PR

Abstract: We consider a generalization of the classical pinning problem for integer-valued random walks conditioned to stay non-negative. More specifically, we take pinning potentials of the form $\sum_{j\geq 0}\epsilon_j N_j$, where $N_j$ is the number of visits to the state $j$ and ${\epsilon_j}$ is a non-negative sequence. Partly motivated by similar problems for low-temperature contour models in statistical physics, we aim at finding a sharp characterization of the threshold of the wetting transition, especially in the regime where the variance $\sigma2$ of the single step of the random walk is small. Our main result says that, for natural choices of the pinning sequence ${\epsilon_j}$, localization (respectively delocalization) occurs if $\sigma{-2}\sum_{ j\geq0}(j+1)\epsilon_j\geq\delta{-1}$ (respectively $\le \delta$), for some universal $\delta <1$. Our finding is reminiscent of the classical Bargmann-Jost-Pais criteria for the absence of bound states for the radial Schr\"odinger equation. The core of the proof is a recursive argument to bound the free energy of the model. Our approach is rather robust, which allows us to obtain similar results in the case where the random walk trajectory is replaced by a self-avoiding path $\gamma$ in $\mathbb Z2$ with weight $\exp(-\beta |\gamma|)$, $|\gamma|$ being the length of the path and $\beta>0$ a large enough parameter. This generalization is directly relevant for applications to the above mentioned contour models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.