Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Remainder Terms for Several Inequalities on Some Groups of Heisenberg-type (1410.1433v1)

Published 28 Sep 2014 in math.AP, math.CA, and math.FA

Abstract: We give some estimates of the remainder terms for several conformally-invariant Sobolev-type inequalities on the Heisenberg group, in analogy with the Euclidean case. By considering the variation of associated functionals, we give a stability of two dual forms: the fractional Sobolev (Folland-Stein) and Hardy-Littlewood-Sobolev inequality, in terms of distance to the submanifold of extremizers. Then we compare their remainder terms to improve the inequalities in another way. We also compare, in the limit case s = Q (or $\lambda$ = 0), the remainder terms of Beckner-Onofri inequality and its dual Logarithmic Hardy-Littlewood-Sobolev inequality. Besides, we also list without proof some results for the other two cases of groups of Iwasawa-type. Our results generalize earlier works on Euclidean spaces by Chen, Frank, Weth [CFW13] and Dolbeault, Jankowiakin [DJ14] onto some groups of Heisenberg-type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.