Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Random walks with different directions: Drunkards beware ! (1409.7991v1)

Published 29 Sep 2014 in math.CO and math.PR

Abstract: As an extension of Polya's classical result on random walks on the square grids ($\Zd$), we consider a random walk where the steps, while still have unit length, point to different directions. We show that in dimensions at least 4, the returning probability after $n$ steps is at most $n{-d/2 - d/(d-2) +o(1)}$, which is sharp. The real surprise is in dimensions 2 and 3. In dimension 2, where the traditional grid walk is recurrent, our upper bound is $n{-\omega (1)}$, which is much worse than higher dimensions. In dimension 3, we prove an upper bound of order $n{-4 +o(1)}$. We discover a new conjecture concerning incidences between spheres and points in $\R3$, which, if holds, would improve the bound to $n{-9/2 +o(1)}$, which is consistent % with the $d \ge 4$ case. to the $d \ge 4$ case. This conjecture resembles Szemer\'edi-Trotter type results and is of independent interest.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)