Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Iteration complexity analysis of dual first order methods for conic convex programming (1409.1462v2)

Published 4 Sep 2014 in math.OC

Abstract: In this paper we provide a detailed analysis of the iteration complexity of dual first order methods for solving conic convex problems. When it is difficult to project on the primal feasible set described by convex constraints, we use the Lagrangian relaxation to handle the complicated constraints and then, we apply dual first order algorithms for solving the corresponding dual problem. We give convergence analysis for dual first order algorithms (dual gradient and fast gradient algorithms): we provide sublinear or linear estimates on the primal suboptimality and feasibility violation of the generated approximate primal solutions. Our analysis relies on the Lipschitz property of the gradient of the dual function or an error bound property of the dual. Furthermore, the iteration complexity analysis is based on two types of approximate primal solutions: the last primal iterate or an average primal sequence.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.