Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Algorithms for Dominating Induced Matching Based on Graph Partition (1408.6196v1)

Published 26 Aug 2014 in cs.DS

Abstract: A dominating induced matching, also called an efficient edge domination, of a graph $G=(V,E)$ with $n=|V|$ vertices and $m=|E|$ edges is a subset $F \subseteq E$ of edges in the graph such that no two edges in $F$ share a common endpoint and each edge in $E\setminus F$ is incident with exactly one edge in $F$. It is NP-hard to decide whether a graph admits a dominating induced matching or not. In this paper, we design a $1.1467nn{O(1)}$-time exact algorithm for this problem, improving all previous results. This problem can be redefined as a partition problem that is to partition the vertex set of a graph into two parts $I$ and $F$, where $I$ induces an independent set (a 0-regular graph) and $F$ induces a perfect matching (a 1-regular graph). After giving several structural properties of the problem, we show that the problem always contains some "good vertices", branching on which by including them to either $I$ or $F$ we can effectively reduce the graph. This leads to a fast exact algorithm to this problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.