Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dominating induced matchings in graphs containing no long claw (1505.02558v1)

Published 11 May 2015 in cs.DM, cs.DS, and math.CO

Abstract: An induced matching $M$ in a graph $G$ is dominating if every edge not in $M$ shares exactly one vertex with an edge in $M$. The dominating induced matching problem (also known as efficient edge domination) asks whether a graph $G$ contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special properties. In particular, it is solvable in polynomial time for claw-free graphs. In the present paper, we study this problem for graphs containing no long claw, i.e. no induced subgraph obtained from the claw by subdividing each of its edges exactly once. To solve the problem in this class, we reduce it to the following question: given a graph $G$ and a subset of its vertices, does $G$ contain a matching saturating all vertices of the subset? We show that this question can be answered in polynomial time, thus providing a polynomial-time algorithm to solve the dominating induced matching problem for graphs containing no long claw.

Citations (16)

Summary

We haven't generated a summary for this paper yet.