A Holographic Approach to Spacetime Entanglement (1408.6005v1)
Abstract: Recently it has been proposed that the Bekenstein-Hawking formula for the entropy of spacetime horizons has a larger significance as the leading contribution to the entanglement entropy of general spacetime regions, in the underlying quantum theory [2]. This `spacetime entanglement conjecture' has a holographic realization that equates the entropy formula evaluated on an arbitrary space-like co-dimension two surface with the differential entropy of a particular family of co-dimension two regions on the boundary. The differential entropy can be thought of as a directional derivative of entanglement entropy along a family of surfaces. This holographic relation was first studied in [3] and extended in [4], and it has been proven to hold in Einstein gravity for bulk surfaces with planar symmetry (as well as for certain higher curvature theories) in [4]. In this essay, we review this proof and provide explicit examples of how to build the appropriate family of boundary intervals for a given bulk curve. Conversely, given a family of boundary intervals, we provide a method for constructing the corresponding bulk curve in terms of intersections of entanglement wedge boundaries. We work mainly in three dimensions, and comment on how the constructions extend to higher dimensions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.