Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Global Linear Convergence of the ADMM with Multi-Block Variables (1408.4266v2)

Published 19 Aug 2014 in math.OC

Abstract: The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of $N$ convex functions with $N$-block variables linked by some linear constraints. While the convergence of the ADMM for $N=2$ was well established in the literature, it remained an open problem for a long time whether or not the ADMM for $N \ge 3$ is still convergent. Recently, it was shown in [3] that without further conditions the ADMM for $N\ge 3$ may actually fail to converge. In this paper, we show that under some easily verifiable and reasonable conditions the global linear convergence of the ADMM when $N\geq 3$ can still be assured, which is important since the ADMM is a popular method for solving large scale multi-block optimization models and is known to perform very well in practice even when $N\ge 3$. Our study aims to offer an explanation for this phenomenon.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.