Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Second-Order Karush-Kuhn-Tucker Optimality Conditions for Vector Problems with Continuously Differentiable Data and Second-Order Constraint Qualifications (1408.2614v1)

Published 12 Aug 2014 in math.OC

Abstract: Some necessary and sufficient optimality conditions for inequality constrained problems with continuously differentiable data were obtained in the papers [I. Ginchev and V.I. Ivanov, Second-order optimality conditions for problems with C$\sp{1}$ data, J. Math. Anal. Appl., v. 340, 2008, pp. 646--657], [V.I. Ivanov, Optimality conditions for an isolated minimum of order two in C$\sp{1}$ constrained optimization, J. Math. Anal. Appl., v. 356, 2009, pp. 30--41] and [V. I. Ivanov, Second- and first-order optimality conditions in vector optimization, Internat. J. Inform. Technol. Decis. Making, 2014, DOI: 10.1142/S0219622014500540]. In the present paper, we continue these investigations. We obtain some necessary optimality conditions of Karush--Kuhn--Tucker type for scalar and vector problems. A new second-order constraint qualification of Zangwill type is introduced. It is applied in the optimality conditions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)