Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncommutative Uncertainty Principles (1408.1165v1)

Published 6 Aug 2014 in math.OA, cs.IT, math.IT, and math.QA

Abstract: The classical uncertainty principles deal with functions on abelian groups. In this paper, we discuss the uncertainty principles for finite index subfactors which include the cases for finite groups and finite dimensional Kac algebras. We prove the Hausdorff-Young inequality, Young's inequality, the Hirschman-Beckner uncertainty principle, the Donoho-Stark uncertainty principle. We characterize the minimizers of the uncertainty principles. We also prove that the minimizer is uniquely determined by the supports of itself and its Fourier transform. The proofs take the advantage of the analytic and the categorial perspectives of subfactor planar algebras. Our method to prove the uncertainty principles also works for more general cases, such as Popa's $\lambda$-lattices, modular tensor categories etc.

Citations (44)

Summary

We haven't generated a summary for this paper yet.