Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An autoregressive (AR) model based stochastic unknown input realization and filtering technique (1407.6404v2)

Published 23 Jul 2014 in math.DS and cs.SY

Abstract: This paper studies the state estimation problem of linear discrete-time systems with stochastic unknown inputs. The unknown input is a wide-sense stationary process while no other prior informaton needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input statistics from the output data by solving an appropriate least squares problem, then fit an AR model to the recovered input statistics and construct an innovations model of the unknown inputs using the eigensystem realization algorithm (ERA). An augmented state system is constructed and the standard Kalman filter is applied for state estimation. A reduced order model (ROM) filter is also introduced to reduce the computational cost of the Kalman filter. Two numerical examples are given to illustrate the procedure.

Citations (4)

Summary

We haven't generated a summary for this paper yet.