Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust guarantees for learning an autoregressive filter (1905.09897v1)

Published 23 May 2019 in cs.LG, math.OC, and stat.ML

Abstract: The optimal predictor for a linear dynamical system (with hidden state and Gaussian noise) takes the form of an autoregressive linear filter, namely the Kalman filter. However, a fundamental problem in reinforcement learning and control theory is to make optimal predictions in an unknown dynamical system. To this end, we take the approach of directly learning an autoregressive filter for time-series prediction under unknown dynamics. Our analysis differs from previous statistical analyses in that we regress not only on the inputs to the dynamical system, but also the outputs, which is essential to dealing with process noise. The main challenge is to estimate the filter under worst case input (in $\mathcal H_\infty$ norm), for which we use an $L\infty$-based objective rather than ordinary least-squares. For learning an autoregressive model, our algorithm has optimal sample complexity in terms of the rollout length, which does not seem to be attained by naive least-squares.

Citations (7)

Summary

We haven't generated a summary for this paper yet.