Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Sequence Motif Discovery (1407.6125v2)

Published 23 Jul 2014 in q-bio.QM and cs.CE

Abstract: Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, motif finding algorithms of increasingly high performance are required to process the big datasets produced by new high-throughput sequencing technologies. Most existing algorithms are computationally demanding and often cannot support the large size of new experimental data. We present a new motif discovery algorithm that is built on a recent machine learning technique, referred to as Method of Moments. Based on spectral decompositions, this method is robust under model misspecification and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. In a few minutes, we can process datasets of hundreds of thousand sequences and extract motif profiles that match those computed by various state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.