Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RL-MD: A Novel Reinforcement Learning Approach for DNA Motif Discovery (2209.15181v1)

Published 30 Sep 2022 in cs.LG, cs.AI, and q-bio.GN

Abstract: The extraction of sequence patterns from a collection of functionally linked unlabeled DNA sequences is known as DNA motif discovery, and it is a key task in computational biology. Several deep learning-based techniques have recently been introduced to address this issue. However, these algorithms can not be used in real-world situations because of the need for labeled data. Here, we presented RL-MD, a novel reinforcement learning based approach for DNA motif discovery task. RL-MD takes unlabelled data as input, employs a relative information-based method to evaluate each proposed motif, and utilizes these continuous evaluation results as the reward. The experiments show that RL-MD can identify high-quality motifs in real-world data.

Summary

We haven't generated a summary for this paper yet.