Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Resultant of an equivariant polynomial system with respect to the symmetric group (1407.2799v1)

Published 10 Jul 2014 in math.AC and cs.SC

Abstract: Given a system of n homogeneous polynomials in n variables which is equivariant with respect to the canonical actions of the symmetric group of n symbols on the variables and on the polynomials, it is proved that its resultant can be decomposed into a product of several smaller resultants that are given in terms of some divided differences. As an application, we obtain a decomposition formula for the discriminant of a multivariate homogeneous symmetric polynomial.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.