Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant. Part 1: Well posedness and breakdown criterion (1406.7245v3)

Published 27 Jun 2014 in gr-qc, math-ph, math.AP, and math.MP

Abstract: This paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein-Maxwell-scalar field system with a cosmological constant $\Lambda$, with the data on the outgoing initial null hypersurface given by a subextremal Reissner-Nordstrom black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a "suitably regular" Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series we study the stability of the radius function at the Cauchy horizon. In the third and final paper we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.