Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Optimization for Large-Scale Max-Norm Regularization (1406.3190v4)

Published 12 Jun 2014 in stat.ML and cs.LG

Abstract: Max-norm regularizer has been extensively studied in the last decade as it promotes an effective low-rank estimation for the underlying data. However, such max-norm regularized problems are typically formulated and solved in a batch manner, which prevents it from processing big data due to possible memory budget. In this paper, hence, we propose an online algorithm that is scalable to large-scale setting. Particularly, we consider the matrix decomposition problem as an example, although a simple variant of the algorithm and analysis can be adapted to other important problems such as matrix completion. The crucial technique in our implementation is to reformulating the max-norm to an equivalent matrix factorization form, where the factors consist of a (possibly overcomplete) basis component and a coefficients one. In this way, we may maintain the basis component in the memory and optimize over it and the coefficients for each sample alternatively. Since the memory footprint of the basis component is independent of the sample size, our algorithm is appealing when manipulating a large collection of samples. We prove that the sequence of the solutions (i.e., the basis component) produced by our algorithm converges to a stationary point of the expected loss function asymptotically. Numerical study demonstrates encouraging results for the efficacy and robustness of our algorithm compared to the widely used nuclear norm solvers.

Summary

We haven't generated a summary for this paper yet.