Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bounds on the support of the multifractal spectrum of stochastic processes (1406.2920v1)

Published 11 Jun 2014 in math.PR

Abstract: Multifractal analysis of stochastic processes deals with the fine scale properties of the sample paths and seeks for some global scaling property that would enable extracting the so-called spectrum of singularities. In this paper we establish bounds on the support of the spectrum of singularities. To do this, we prove a theorem that complements the famous Kolmogorov's continuity criterion. The nature of these bounds helps us identify the quantities truly responsible for the support of the spectrum. We then make several conclusions from this. First, specifying global scaling in terms of moments is incomplete due to possible infinite moments, both of positive and negative order. For the case of ergodic self-similar processes we show that negative order moments and their divergence do not affect the spectrum. On the other hand, infinite positive order moments make the spectrum nontrivial. In particular, we show that the self-similar stationary increments process with the nontrivial spectrum must be heavy-tailed. This shows that for determining the spectrum it is crucial to capture the divergence of moments. We show that the partition function is capable of doing this and also propose a robust variant of this method for negative order moments.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.